Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130799, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479663

ABSTRACT

The 3-quinuclidinone reductase plays an irreplaceable role in the biopreparation of (R)-3-quinuclidinol, an intermediate vital for synthesis of various pharmaceuticals. Thermal robustness is a critical factor for enzymatic synthesis in industrial applications. This study characterized a new 3-quinuclidinone reductase, named SaQR, with significant thermal stability. The SaQR was overexpressed in a GST-fused state, and substrate and cofactor screening were conducted. Additionally, three-dimensional structure prediction using AlphaFold and analysis were performed, along with relevant thermostability tests, and the evaluation of factors influencing enzyme activity. The findings highlight the remarkable thermostability of SaQR, retaining over 90% of its activity after 72 h at 50°C, with an optimal operational temperature of 85°C. SaQR showed typical structural traits of the SDR superfamily, with its cofactor-determining residue being aspartic acid, conferring nicotinamide adenine dinucleotide (NAD(H)) preference. Moreover, K+ and Na+, at a concentration of 400 mM, could significantly enhance the activity, while Mg2+ and Mn2+ only display inhibitory effects within the tested concentration range. The findings of molecular dynamics simulations suggest that high temperatures may disrupt the binding of enzyme to substrate by increasing the flexibility of residues 205-215. In conclusion, this study reports a novel 3-quinuclidinone reductase with remarkable thermostability.


Subject(s)
Oxidoreductases , Quinuclidines , Oxidoreductases/metabolism , Quinuclidines/pharmacology , Quinuclidines/metabolism , NAD/metabolism , Molecular Dynamics Simulation , Enzyme Stability
2.
Free Radic Biol Med ; 213: 190-207, 2024 03.
Article in English | MEDLINE | ID: mdl-38242246

ABSTRACT

The Keap1-Nrf2 signalling to transcriptionally regulate antioxidant response element (ARE)-driven target genes has been accepted as key redox-sensitive pathway governing a vast variety of cellular stresses during healthy survival and disease development. Herein, we identified two nuanced isoforms α and ß of Keap1 in HepG2 cells, arising from its first and another in-frame translation starting codons, respectively. In identifying those differential expression genes monitored by Keap1α and/or Keap1ß, an unusual interaction of Keap1 with Smad2/3 was discovered by parsing transcriptome sequencing, Keap1-interacting protein profiling and relevant immunoprecipitation data. Further examination validated that Smad2/3 enable physical interaction with Keap1, as well as its isoforms α and ß, by both EDGETSD and DLG motifs in the linker regions between their MH1 and MH2 domains, such that the stability of Smad2/3 and transcriptional activity are enhanced with their prolonged half-lives and relevant signalling responses from the cytoplasmic to nuclear compartments. The activation of Smad2/3 by Keap1, Keap1α or Keap1ß was much likely contributable to a coordinative or another competitive effect of Nrf2, particularly in distinct Keap1-based cellular responses to its cognate growth factor (i.e. TGF-ß1) or redox stress (e.g. stimulated by tBHQ and DTT). Overall, this discovery presents a novel functional bridge crossing the Keap1-Nrf2 redox signalling and the TGF-ß1-Smad2/3 pathways so as to coordinately regulate the healthy growth and development.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism
3.
Protein Pept Lett ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38288819

ABSTRACT

BACKGROUND: 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH). METHODS: The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2. RESULTS: Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme's activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity. CONCLUSION: We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.

4.
Int J Biol Macromol ; 258(Pt 1): 128847, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123031

ABSTRACT

Hydroxysteroid dehydrogenases (HSDHs) are crucial for bile acid metabolism and influence the size of the bile acid pool and gut microbiota composition. HSDHs with high activity, thermostability, and substrate selectivity are the basis for constructing engineered bacteria for disease treatment. In this study, we designed mutations at the cofactor binding site involving Thr15 and Arg16 residues of HSDH St-2-2. The T15A, R16A, and R16Q mutants exhibited 7.85-, 2.50-, and 4.35-fold higher catalytic activity than the wild type, respectively, while also displaying an altered substrate preference (from taurocholic acid (TCA) to taurochenodeoxycholic acid (TCDCA)). These mutants showed lower Km and higher kcat values, indicating stronger binding to the substrate and resulting in 3190-, 3123-, and 3093-fold higher kcat/Km values for TCDCA oxidation. Furthermore, the Tm values of the T15A, R16A, and R16Q mutants were found to increase by 4.3 °C, 6.0 °C, and 7.0 °C, respectively. Molecular structure analysis indicated that reshaped internal hydrogens and surface mutations could improve catalytic activity and thermostability, and altered interactions among the catalytic triad, cofactor binding sites, and substrates could change substrate preference. This work provides valuable insights into modifying substrate preference as well as enhancing the catalytic activity and thermostability of HSDHs by targeting the cofactor binding site.


Subject(s)
Bacteria , Hydroxysteroid Dehydrogenases , Bacteria/metabolism , Hydroxysteroid Dehydrogenases/metabolism , Bile Acids and Salts , Binding Sites , Kinetics
6.
Nat Commun ; 14(1): 6384, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821436

ABSTRACT

Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Rabbits , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Signal Transduction , Ubiquitination , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
Acta Pharm Sin B ; 13(3): 1071-1092, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970206

ABSTRACT

Nowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood. In this work, we identify the ubiquitin-specific protease 13 (USP13) as a critical and novel endogenous blocker of IRHOM2, and we also indicate that USP13 is an IRHOM2-interacting protein that catalyzes deubiquitination of Irhom2 in hepatocytes. Hepatocyte-specific loss of the Usp13 disrupts liver metabolic homeostasis, followed by glycometabolic disorder, lipid deposition, increased inflammation, and markedly promotes NASH development. Conversely, transgenic mice with Usp13 overexpression, lentivirus (LV)- or adeno-associated virus (AAV)-driven Usp13 gene therapeutics mitigates NASH in 3 models of rodent. Mechanistically, in response to metabolic stresses, USP13 directly interacts with IRHOM2 and removes its K63-linked ubiquitination induced by ubiquitin-conjugating enzyme E2N (UBC13), a ubiquitin E2 conjugating enzyme, and thus prevents its activation of downstream cascade pathway. USP13 is a potential treatment target for NASH therapy by targeting the Irhom2 signaling pathway.

8.
Int J Biol Macromol ; 219: 159-165, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35934074

ABSTRACT

3α-HSDHs have a crucial role in the bioconversion of steroids, and have been widely applied in the detection of total bile acid (TBA). In this study, we report a novel NADP(H)-dependent 3α-HSDH (named Sc 3α-HSDH) cloned from the intestinal microbiome of Ursus thibetanus. Sc 3α-HSDH was solubly expressed in E. coli (BL21) as a recombinant glutathione-S-transferase (GST)-tagged protein and freed from its GST-fusion by cleavage using the PreScission protease. Sc 3α-HSDH is a new member of the short-chain dehydrogenases/reductase superfamily (SDRs) with a typical α/ß folding pattern, based on protein three-dimensional models predicted by AlphaFold. The best activity of Sc 3α-HSDH occurred at pH 8.5 and the temperature optima was 55 °C, indicating that Sc 3α-HSDH is not an extremozyme. The catalytic efficiencies (kcat/Km) of Sc 3α-HSDH catalyzing the oxidation reaction with the substrates, glycochenodeoxycholic acid (GCDCA) and glycoursodeoxycholic acid (GUDCA), were 183.617 and 34.458 s-1 mM-1, respectively. In addition, multiple metal ions can enhance the activity of Sc 3α-HSDH when used at concentrations ranging from 2 % to 42 %. The results also suggest that the metagenomic approach is an efficient method for identifying novel enzymes.


Subject(s)
Gastrointestinal Microbiome , Ursidae , Animals , Bile Acids and Salts , Escherichia coli/genetics , Escherichia coli/metabolism , Glutathione , Glycochenodeoxycholic Acid , Hydroxysteroid Dehydrogenases/metabolism , Ions , NADP , Peptide Hydrolases , Recombinant Proteins/metabolism , Transferases , Ursidae/metabolism
9.
Protein Pept Lett ; 29(11): 946-953, 2022.
Article in English | MEDLINE | ID: mdl-35996269

ABSTRACT

BACKGROUND: 3α-Hydroxysteroid dehydrogenase (3α-HSDH) reversibly catalyzes the oxidation of the C3-hydroxyl group of steroids, and has been used in clinical applications to detect serum total bile acid (TBA). In this study, A novel 3α-HSDH (called Sb 3α-HSDH) was expressed and characterized. METHODS: Plasmid pGEX-6p-1 was used for the expression of Sb 3α-HSDH in Escherichia coli (BL21), and activities were determined by recording the change in absorbance at 340 nm with/without adding of ions. A prediction of its three-dimensional structure was performed with AlphaFold. RESULTS: The substrate specificity test indicated that Sb 3α-HSDH is NAD(H)-dependent and has no activity with NADP(H). We also showed that Sb 3α-HSDH can catalyze the oxidation reaction of GCDCA and GUDCA with catalytic efficiencies (kcat/Km) of 29.060 and 45.839 s-1mM-1, respectively. The temperature dependence of catalysis suggests that Sb 3α-HSDH is a member of the mesophilic enzymes with its best activity at about 45 °C. The optimum pH of Sb 3α-HSDH was found to be between pH 8.0 and 9.0. The effect of ions, including K+, Mg2+, Na+, Cu2+, Mn2+, Fe2+, and Fe3+ on enzyme activity was evaluated and K+ and Mg2+ were found to enhance the activity of Sb 3α-HSDH by about 20% at concentrations of 200 mM and 50 mM, respectively. The well-conserved GIG motif, the active sites, and the Rossmann fold in the threedimensional structure indicate that Sb 3α-HSDH belongs to the "classical" type of SDR superfamily. CONCLUSION: We expressed and characterized a novel NAD(H)-dependent 3α-HSDH with typical threedimensional characteristics of the SDRs that exhibited substrate specificity to GCDCA and GUDCA.


Subject(s)
Hydroxysteroid Dehydrogenases , NAD , NAD/metabolism , Hydroxysteroid Dehydrogenases/chemistry , Substrate Specificity , Catalytic Domain , Escherichia coli/genetics , Escherichia coli/metabolism , Ions
10.
Redox Biol ; 51: 102274, 2022 05.
Article in English | MEDLINE | ID: mdl-35240537

ABSTRACT

Mulberrin (Mul) is a key component of the traditional Chinese medicine Romulus Mori with various biological functions. However, the effects of Mul on liver fibrosis have not been addressed, and thus were investigated in our present study, as well as the underlying mechanisms. Here, we found that Mul administration significantly ameliorated carbon tetrachloride (CCl4)-induced liver injury and dysfunction in mice. Furthermore, CCl4-triggerd collagen deposition and liver fibrosis were remarkably attenuated in mice with Mul supplementation through suppressing transforming growth factor ß1 (TGF-ß1)/SMAD2/3 signaling pathway. Additionally, Mul treatments strongly restrained the hepatic inflammation in CCl4-challenged mice via blocking nuclear factor-κB (NF-κB) signaling. Importantly, we found that Mul markedly increased liver TRIM31 expression in CCl4-treated mice, accompanied with the inactivation of NOD-like receptor protein 3 (NLRP3) inflammasome. CCl4-triggered hepatic oxidative stress was also efficiently mitigated by Mul consumption via improving nuclear factor E2-related factor 2 (Nrf2) activation. Our in vitro studies confirmed that Mul reduced the activation of human and mouse primary hepatic stellate cells (HSCs) stimulated by TGF-ß1. Consistently, Mul remarkably retarded the inflammatory response and reactive oxygen species (ROS) accumulation both in human and murine hepatocytes. More importantly, by using hepatocyte-specific TRIM31 knockout mice (TRIM31Hep-cKO) and mouse primary hepatocytes with Nrf2-knockout (Nrf2KO), we identified that the anti-fibrotic and hepatic protective effects of Mul were TRIM31/Nrf2 signaling-dependent, relieving HSCs activation and liver fibrosis. Therefore, Mul-ameliorated hepatocyte injury contributed to the suppression of HSCs activation by improving TRIM31/Nrf2 axis, thus providing a novel therapeutic strategy for hepatic fibrosis treatment.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Animals , Benzene Derivatives , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/pharmacology
11.
Nat Commun ; 13(1): 1052, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217669

ABSTRACT

Systemic metabolic syndrome significantly increases the risk of morbidity and mortality in patients with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). However, no effective therapeutic strategies are available, practically because our understanding of its complicated pathogenesis is poor. Here we identify the tripartite motif-containing protein 31 (Trim31) as an endogenous inhibitor of rhomboid 5 homolog 2 (Rhbdf2), and we further determine that Trim31 directly binds to Rhbdf2 and facilitates its proteasomal degradation. Hepatocyte-specific Trim31 ablation facilitates NAFLD-associated phenotypes in mice. Inversely, transgenic or ex vivo gene therapy-mediated Trim31 gain-of-function in mice with NAFLD phenotypes virtually alleviates severe deterioration and progression of steatohepatitis. The current findings suggest that Trim31 is an endogenous inhibitor of Rhbdf2 and downstream cascades in the pathogenic process of steatohepatitis and that it may serve as a feasible therapeutical target for the treatment of NAFLD/NASH and associated metabolic disorders.


Subject(s)
Intracellular Signaling Peptides and Proteins , Non-alcoholic Fatty Liver Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Carrier Proteins/metabolism , Hepatocytes/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Int J Biol Macromol ; 204: 34-40, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35124015

ABSTRACT

3α-Hydroxysteroid dehydrogenase (3α-HSDH) plays a crucial role in the metabolism of sex hormones and bile acids. In this study, we heterologously expressed and characterized a novel 3α-HSDH (named Sa 3α-HSDH). Substrate specificity tests showed that Sa 3α-HSDH could catalyze Glycochenodeoxycholic acid (GCDCA) and Glycoursodeoxycholic acid (GUDCA) with catalytic efficiency (kcat/Km) 40.815 and 14.616 s-1 mM-1, respectively. Sa 3α-HSDH is NAD(H) dependent according to the results of coenzyme screening, and one of mesophilic enzymes with optimum temperature 40 °C. Additionally, Sa 3α-HSDH displayed the highest activity at pH 8.5. In this study, effect of metal ions on activity was investigated, and the results showed Mn2+ (10 mM) and Mg2+ (50 mM) could significantly enhance the activity by nearly 140% and 100%, respectively. Fe2+, Cu2+, Fe3+ and K+ could enhance the activity of Sa 3α-HSDH at different levels. Meanwhile, Na+ only displayed activity-declining effect. The three-dimensional structure of Sa 3α-HSDH was predicted and displayed the well-conserved α/ß folding patterns (Rossman-fold) with a central ß-sheet. These results indicated that Sa 3α-HSDH would contribute to the quantitative determination of serum total bile acids and associated bioconversion.


Subject(s)
Magnesium , NAD , Hydroxysteroid Dehydrogenases/metabolism , Ions , Manganese , NAD/metabolism
13.
Protein Pept Lett ; 28(11): 1206-1219, 2021.
Article in English | MEDLINE | ID: mdl-34397319

ABSTRACT

7α-Hydroxysteroid dehydrogenase and 7ß-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining novel 7α-hydroxysteroid dehydrogenase and 7ß-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.


Subject(s)
Hydroxysteroid Dehydrogenases/chemistry , Animals , Enzyme Stability , Humans , Hydroxysteroid Dehydrogenases/metabolism , Protein Domains , Structure-Activity Relationship , Substrate Specificity
14.
Int Immunopharmacol ; 95: 107340, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33667999

ABSTRACT

Obesity is an important factor implicated in chronic kidney disease (CKD). Juglanin (Jug) is a natural compound extracted from the crude Polygonumaviculare, showing anti-inflammatory and anti-diabetic effects. However, whether Jug has protective effects against obesity-induced renal injury, little has been investigated. Herein, we attempted to explore the potential of Jug in mediating obesity-induced kidney disease in high fat diet (HFD)-challenged mice. Our results suggested that chronic HFD feeding markedly increased the body weights of mice compared to the ones fed with normal chow diet (NCD), along with significant glucose intolerance and insulin resistance. However, these metabolic disorders induced by HFD were effectively alleviated by Jug treatments in a dose-dependent manner. Moreover, HFD-challenged mice showed apparent histopathological changes in renal tissues with significant collagen accumulation, which were attenuated by Jug supplementation. In addition, Jug treatment decreased the expression levels of kidney injury molecule-1 (KIM-1), while increased nephrin and podocin expression levels in kidney of HFD-challenged mice, improving the renal dysfunction. Furthermore, HFD led to lipid deposition in kidney samples of mice by enhancing abnormal lipid metabolism. In addition, HFD promoted the releases of circulating pro-inflammatory cytokines, and enhanced the renal inflammation by activating nuclear factor-kappa B/histone deacetylase 3 (NF-κB/HDAC3) signaling. HFD-induced dyslipidemia and inflammation were considerably abrogated by Jug administration in mice. The protective effects of Jug against renal injury were confirmed in palmitate (PA)-stimulated HK2 cells in vitro mainly through suppressing the nuclear translocation of NF-κB and HDAC3, repressing inflammation and lipid accumulation eventually. Hence, Jug could ameliorate HFD-induced kidney injury mainly through blocking the NF-κB/HDAC3 nuclear translocation.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dyslipidemias/drug therapy , Glycosides/therapeutic use , Hypolipidemic Agents/therapeutic use , Kaempferols/therapeutic use , Kidney Diseases/drug therapy , Metabolic Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Cell Survival/drug effects , Diet, High-Fat , Dyslipidemias/metabolism , Dyslipidemias/pathology , Glycosides/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Hypolipidemic Agents/pharmacology , Insulin Resistance , Kaempferols/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lipid Metabolism/drug effects , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/drug effects
15.
Int J Biol Macromol ; 177: 111-118, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33592267

ABSTRACT

7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this paper, a novel NADP(H)-dependent 7α-HSDH (named J-1-1) was discovered, heterologously expressed in Escherichia coli and biochemically characterized. J-1-1 exhibited high enzymatic activities. The specific activities of J-1-1 toward TCDCA, glycochenodeoxycholic acid (GCDCA) and ethyl benzoylacetate (EBA) were 188.3 ± 0.2, 217.6 ± 0.4, and 20.0 ± 0.2 U·mg-1, respectively, in 50 mM Glycine-NaOH, pH 10.5. Simultaneously, J-1-1 showed high thermostability; 73% of its activity maintained after heat treatment at 40 °C for 100 h. Particularly noteworthy is that magnesium ion could stabilize the structure of J-1-1, resulting in the enhancement of its enzymatic activity and thermostability. The enzymatic activity of J-1-1 increased 40-fold in the presence of 50 mM Mg2+, and T0.5 increased by approximately 6 °C. Furthermore, after heat treatment at 40 °C for 20 min, the control group only retained 52% of the residual enzyme activity, while the residual enzyme activity of the experimental group was still 77% of the J-1-1 enzyme activity with Mg2+ and without heat treatment. These properties of 7α-HSDH would be expected to contribute to more extensive applications in the biotransformation of related substrates.


Subject(s)
Hydroxysteroid Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/metabolism , Ions/metabolism , Magnesium/metabolism , Amino Acid Sequence , Biotransformation/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Glycochenodeoxycholic Acid/genetics , Glycochenodeoxycholic Acid/metabolism , Sequence Alignment , Taurochenodeoxycholic Acid/genetics
16.
Hepatology ; 73(4): 1346-1364, 2021 04.
Article in English | MEDLINE | ID: mdl-32592194

ABSTRACT

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) has been widely recognized as a precursor to metabolic complications. Elevated inflammation levels are predictive of NAFLD-associated metabolic disorder. Inactive rhomboid-like protein 2 (iRhom2) is regarded as a key regulator in inflammation. However, the precise mechanisms by which iRhom2-regulated inflammation promotes NAFLD progression remain to be elucidated. APPROACH AND RESULTS: Here, we report that insulin resistance, hepatic steatosis, and specific macrophage inflammatory activation are significantly alleviated in iRhom2-deficient (knockout [KO]) mice, but aggravated in iRhom2 overexpressing mice. We further show that, mechanistically, in response to a high-fat diet (HFD), iRhom2 KO mice and mice with iRhom2 deficiency in myeloid cells only showed less severe hepatic steatosis and insulin resistance than controls. Inversely, transplantation of bone marrow cells from healthy mice to iRhom2 KO mice expedited the severity of insulin resistance and hepatic dyslipidemia. Of note, in response to HFD, hepatic iRhom2 binds to mitogen-activated protein kinase kinase kinase 7 (MAP3K7) to facilitate MAP3K7 phosphorylation and nuclear factor kappa B cascade activation, thereby promoting the activation of c-Jun N-terminal kinase/insulin receptor substrate 1 signaling, but disturbing AKT/glycogen synthase kinase 3ß-associated insulin signaling. The iRhom2/MAP3K7 axis is essential for iRhom2-regulated liver steatosis. CONCLUSIONS: iRhom2 may represent a therapeutic target for the treatment of HFD-induced hepatic steatosis and insulin resistance.


Subject(s)
Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , MAP Kinase Kinase Kinases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Activation, Metabolic , Animals , Carrier Proteins/biosynthesis , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Progression , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Insulin Resistance/physiology , Intracellular Signaling Peptides and Proteins/biosynthesis , Liver/physiopathology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Signal Transduction
17.
J Hazard Mater ; 400: 123158, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32947736

ABSTRACT

Ambient particulate matter (PM2.5)-induced metabolic syndromes is a critical contributor to the pathological processes of neurological diseases, but the underlying molecular mechanisms remain poorly understood. The rhomboid 5 homolog 2 (Rhbdf2), an essential regulator in the production of TNF-α, has recently been confirmed to exhibit a key role in regulating inflammation-associated diseases. Thus, we examined whether Rhbdf2 contributes to hypothalamic inflammation via NF-κB associated inflammation activation in long-term PM2.5-exposed mice. Specifically, proopiomelanocortin-specific Rhbdf2 deficiency (Rhbdf2Pomc) and corresponding littermates control mice were used for the current study. After 24 weeks of PM2.5 inhalation, systemic-metabolism disorder was confirmed in WT mice in terms of impaired glucose tolerance, increased insulin resistance, and high blood pressure. Markedly, PM2.5-treated Rhbdf2Pomc mice displayed a significantly opposite trend in these parameters compared with those of the controls group. We next confirmed hypothalamic injury accompanied by abnormal POMC neurons loss, as indicated by increased inflammatory cytokines, chemokines, and oxidative-stress levels and decreased antioxidant activity. These results were further supported by blood routine examination. In summary, our findings suggest that Rhbdf2 plays an important role in exacerbating PM2.5-stimulated POMC neurons loss associated hypothalamic injury, thus providing a possible target for blocking pathological development of air pollution-associated diseases.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/toxicity , Animals , Inflammation/chemically induced , Inflammation/genetics , Mice , Neurons , Oxidative Stress , Particulate Matter/toxicity , Pro-Opiomelanocortin
18.
Redox Biol ; 36: 101645, 2020 09.
Article in English | MEDLINE | ID: mdl-32863207

ABSTRACT

Air pollution containing particulate matter (PM) less than 2.5 µm (PM2.5) plays an essential role in regulating hepatic disease. However, its molecular mechanism is not yet clear, lacking effective therapeutic strategies. In this study, we attempted to investigate the effects and mechanisms of PM2.5 exposure on hepatic injury by the in vitro and in vivo experiments. At first, we found that PM2.5 incubation led to a significant reduction of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), along with markedly reduced expression of different anti-oxidants. Notably, suppressor of IKKε (SIKE), known as a negative regulator of the interferon pathway, was decreased in PM2.5-incubated cells, accompanied with increased activation of TANK-binding kinase 1 (TBK1) and nuclear factor-κB (NF-κB). The in vitro studies showed that Nrf2 positively regulated SIKE expression under the conditions with or without PM2.5. After PM2.5 treatment, Nrf2 knockdown further accelerated SIEK decrease and TBK1/NF-κB activation, and opposite results were observed in cells with Nrf2 over-expression. Subsequently, the gene loss- and gain-function analysis demonstrated that SIKE deficiency further aggravated inflammation and TBK1/NF-κB activation caused by PM2.5, which could be abrogated by SIKE over-expression. Importantly, SIKE-alleviated inflammation was mainly dependent on TBK1 activation. The in vivo studies confirmed that SIKE- and Nrf2-knockout mice showed significantly accelerated hepatic injury after long-term PM2.5 exposure through reducing inflammatory response and oxidative stress. Juglanin (Jug), mainly isolated from Polygonum aviculare, exhibits anti-inflammatory and anti-oxidant effects. We found that Jug could increase Nrf2 activation, and then up-regulated SIKE in cells and liver tissues, mitigating PM2.5-induced liver injury. Together, all these data demonstrated that Nrf2 might positively meditate SIKE to inhibit inflammatory and oxidative damage, ameliorating PM2.5-induced liver injury. Jug could be considered as an effective therapeutic strategy against this disease by improving Nrf2/SIKE signaling pathway.


Subject(s)
Air Pollutants , NF-E2-Related Factor 2 , Air Pollutants/toxicity , Animals , Glycosides , Inflammation , Intracellular Signaling Peptides and Proteins , Kaempferols , Liver/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Particulate Matter/toxicity
19.
Aging (Albany NY) ; 12(6): 4836-4865, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32182211

ABSTRACT

PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.


Subject(s)
Cardiomyopathies/metabolism , Inflammation/metabolism , Mitochondrial Diseases/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Particulate Matter/toxicity , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cardiomyopathies/etiology , Cells, Cultured , Fibrosis , Inflammation/etiology , Male , Mice, Inbred C57BL , Mice, Knockout
20.
Mol Metab ; 34: 112-123, 2020 04.
Article in English | MEDLINE | ID: mdl-32180551

ABSTRACT

OBJECTIVE: Chronic inflammation of adipose tissues contributes to obesity-triggered insulin resistance. Unfortunately, the potential molecular mechanisms regarding obesity-associated systemic inflammation and metabolic disorder remain complicated. Here, we report that inactive rhomboid-like protein 2 (iRhom2) was increased in overweight mice with adipose inflammation. METHODS: Mice with deletion of iRhom2 on a C57BL/6J background, mice without deletion of this gene (controls), and mice with deficiency of iRhom2 only in myeloid cells were fed a standard chow diet (SCD) or a high-fat diet (HFD; 60% fat calories). Then the adipose tissues or bone marrow cells were isolated for the further detection. RESULTS: After 16 weeks on a high-fat diet (HFD), obesity, chronic inflammation in adipose tissues, and insulin resistance were markedly mitigated in iRhom2 knockout (iRhom2 KO) mice, whereas these parameters were exaggerated in iRhom2 overactivated mice. The adverse influences of iRhom2 on adipose inflammation and associated pathologies were determined in db/db mice. We further demonstrated that, in response to an HFD, iRhom2 KO mice and mice with deletion only in the myeloid cells showed less severe adipose inflammation and insulin resistance than control groups. Conversely, transplantation of bone marrow cells from normal mice to iRhom2 KO mice unleashed severe systemic inflammation and metabolic dysfunction after HFD ingestion. CONCLUSION: We identified iRhom2 as a key regulator that promotes obesity-associated metabolic disorders. Loss of iRhom2 from macrophages in adipose tissues may indirectly restrain inflammation and insulin resistance via blocking crosslinks between macrophages and adipocytes. Hence, iRhom2 may be a therapeutic target for obesity-induced metabolic dysfunction.


Subject(s)
Adipose Tissue/metabolism , Carrier Proteins/metabolism , Inflammation/metabolism , Macrophages/metabolism , Obesity/metabolism , Animals , Carrier Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese
SELECTION OF CITATIONS
SEARCH DETAIL
...